If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+n-4=0
a = 8; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·8·(-4)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{129}}{2*8}=\frac{-1-\sqrt{129}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{129}}{2*8}=\frac{-1+\sqrt{129}}{16} $
| 4x-8+5=-7 | | 3x-90=150 | | D(x)=-12x+48 | | 3*z=1 | | 5-4+7x+1=3+7x | | 10x+5-7x=6 | | 5-4+7x+1=1+7x | | 5-4+7x+1=0+7x | | 2x+7x+x=20 | | 5-4+7x+1=9+7x | | 5-4+7x+1=8+7x | | 0.4(3a-4.4)=2(5.2+a) | | 5-4+7x+1=7+7x | | 5-4+7x+1=6+7x | | 19t-6=t | | 2r^2+7r+6=0 | | 23.2=2.9p | | T/4+t/12=1 | | (12x+5)=(17x-5) | | -90=-9s | | (h-7)(h-2)=0 | | 4(6+2)=92(1-x) | | 12-(9-x)=72 | | X+1=9-x÷3 | | (3x-12)(2x-4)=0 | | (6p2+4p+5)=(2p2-5p+1) | | 2x+3(x+1)=3x+11 | | 8x^2−2x−7=0 | | 7+9x=8x-7 | | 35=7(k+1) | | 8x2−2x−7=0 | | (10x+1)-(5x-1)=360 |